Язык программирования R скачать

      Комментарии к записи Язык программирования R скачать отключены

Уважаемый гость, на данной странице Вам доступен материал по теме: Язык программирования R скачать. Скачивание возможно на компьютер и телефон через торрент, а также сервер загрузок по ссылке ниже. Рекомендуем также другие статьи из категории «Журналы».

Язык программирования R скачать.rar
Закачек 514
Средняя скорость 7584 Kb/s
Скачать

R — язык программирования для статистической обработки данных и работы с графикой, а также свободная программная среда вычислений с открытым исходным кодом в рамках проекта GNU. Язык создавался как аналогичный языку S, разработанному в Bell Labs, и является его альтернативной реализацией, хотя между языками есть существенные отличия, но в большинстве своём код на языке S работает в среде R. Изначально R был разработан сотрудниками статистического факультета Оклендского университета Россом Айхэкой (англ. Ross Ihaka ) и Робертом Джентлменом (англ. Robert Gentleman ) (первая буква их имён — R); язык и среда поддерживаются и развиваются организацией R Foundation [5] .

Росс Айхэка
Роберт Джентлмен

  • 3.5.0 « Joy in Playing » ( 23 апреля2018 ) [2][3]

R широко используется как статистическое программное обеспечение для анализа данных и фактически стал стандартом для статистических программ [6] .

R доступен под лицензией GNU GPL. Распространяется в виде исходных кодов, а также откомпилированных приложений под ряд операционных систем: FreeBSD, Solaris [7] и другие дистрибутивы Unix и Linux, Microsoft Windows, Mac OS X.

В R используется интерфейс командной строки, хотя доступны и несколько графических интерфейсов пользователя, например пакет R Commander, RKWard, RStudio, Weka, Rapid Miner, KNIME [en] , а также средства интеграции в офисные пакеты.

В 2010 году R вошёл в список победителей конкурса журнала Infoworld [en] в номинации на лучшее открытое программное обеспечение для разработки приложений [8] .

R поддерживает широкий спектр статистических и численных методов и обладает хорошей расширяемостью с помощью пакетов. Пакеты представляют собой библиотеки для работы специфических функций или специальных областей применения. В базовую поставку R включен основной набор пакетов, а всего по состоянию на 2017 год доступно более 11778 пакетов [9] .

Ещё одна особенность R — возможность создания качественной графики, которая может включать математические символы.

Базовый синтаксис Править

Средний балл выпускника вуза Править

Для удобства работы с R разработан ряд графических интерфейсов, в том числе RStudio, JGR, RKWard, SciViews-R, Statistical Lab, R Commander, Rattle.

Кроме того, в ряде текстовых и кодовых редакторов предусмотренные специальные режимы для работы с R, в частности в ConTEXT, Emacs (Emacs Speaks Statistics), jEdit, Kate, Syn, TextMate, Tinn-R, Vim, Bluefish, WinEdt (с пакетом RWinEdt), Gedit (с пакетом rgedit/gedit-r-plugin). Для среды разработки Eclipse существует специализированный R-плагин; доступ к функциям и среде выполнения R возможен из Python с использованием пакета RPy; работать с R можно из эконометрического пакета Gretl.

Компания Revolution Analytics, основанная в 2007 году, целиком свой бизнес посвящает коммерциализации языка программирования R, в её коммерческом пакете Revolution R примечательны такие компоненты (не распространяемые со свободной версией языка), как ParallelR (поддержка многопоточности среды выполнения), R Productivity Environment (интегрированная среда разработки), RevoScaleR (поддержка массово-параллельной обработки в рамках концепции «больших данных»), RevoDeployR, библиотеки по интеграции с веб-службами, поддержка форматов статистических пакетов корпорации SAS Institute [10] .

В октябре 2011 года корпорация Oracle выпустила аппаратно-программный комплекс Big Data Appliance — NoSQL-кластер серверов массово-параллельной обработки, с интегрированным программными средствами на основе языка R и Apache Hadoop [11] , а в феврале 2012 года язык встроен в Oracle Database [12] . В 2011 году массово-параллельный анализ средствами R реализован в аппаратно-программных комплексах Netezza корпорации IBM [13] [14] ; позднее язык поддержан в аппаратно-программном комплексе SAP Hana.

Также язык R поддерживают коммерческие программные среды Tibco Spotfire, SPSS (начиная с версии 16.0) [15] , Statistica (начиная с версии 9.0), Platform Symphony, SAS, Tableau.

R и дополнительные пакеты распространяются через CRAN (акроним Comprehensive R Archive Network). В настоящее время в мире доступны более 60 зеркал CRAN. Головной узел — (http://cran.r-project.org/) расположен в Вене (Австрия).

Два-три раза в год выходит свободно распространяемый информационный журнал R Journal [16] . Он содержит информацию по статистической обработке данных и разработке, что может быть интересно как пользователям, так и разработчикам R. С января 2001 года по октябрь 2008 года он выходил в качестве бюллетеня R News [17] .

Одна из самых популярных конференций, посвящённых языку — useR! (The R User Conference), проходит ежегодно, начиная с 2004 года, собирает специалистов в различных областях.

Начиная с 2009 года каждой весной в Чикаго проводится конференция, посвящённая применению R в финансах (R/Finance: Applied Finance with R). В 2013 году прошла первая конференция, посвящённая применению R в страховании (R in Insurance).

Жена посылает мужа-программиста в магазин и говорит, купи батон колбасы, а если будут яйца — возьми десяток. Он в магазине: У Вас яйца есть? -Есть -Тогда дайте десять батонов колбасы..

Thursday, March 17, 2011

Язык программирования R для биржевого спекулянта

Сергей, здравствуйте! вы не подскажете, как в R смерджить 2 временных ряда по разным бумагам? например, для того, чтобы регрессию прогнать?

Добрый день, Антон!
Например с помощью функции cbind (в том случае если у вас уже есть временные ряды):

Функция cbind не работает, если ряды имеют неодинаковую длину.
Есть ли функция, которая выбирает из временных рядов только значения с совпадающими датами?

используйте merge (left, right, inner), ваш КО.

Как можно построить график функции желательности.

Так же как и график любой другой функции, по точкам:
x

не могли бы помочь написать программу для сортировки массива слиянием?

Мог бы ответить на конкретные вопросы, но домашнее задание все равно придется делать самостоятельно. И вообще, причем тут R?

parseQuotes
function(From)
<
require(xts) #загрузить модуль xts, он нам нужен
fr

Здравствуйте Сергей.
Не могли бы вы немного рассказать об использовании библиотеки nnet?
С уважением.

Подборка ресурсов для изучения языка программирования R, которая поможет начать изучение «с нуля» и пройти этот путь быстро и эффективно.

Для людей, столкнувшихся лицом к лицу с языком программирования R, существует одна общая проблема — это отсутствие структурированного плана изучения. Они не знают, с чего начать, куда двигаться, какой путь выбрать. А огромное количество информации по этой теме в Сети зачастую лишь сбивает с толку.

После перебирания бесконечных ресурсов и архивов получилось данное всеобъемлющее пособие по языку программирования R, которое поможет начать изучение «с нуля» и пройти этот путь быстро и эффективно.

Прежде, чем отправиться в путь, ответьте для себя на вопрос: почему R? Как он сможет помочь? Посмотрите вот этот 90-секундный ролик от Revolution Analytics, чтобы понять, чем может быть полезен язык программирования R. К слову, Revolution Analytics не так давно была приобретена Microsoft.

Теперь, когда вы решились, самое время настроить машину. Первое, что нужно сделать — это загрузить базовую версию языка программирования R и инструкцию по ее установке с CRAN — Comprehensive R Archive Network (Всеобъемлющая архивная сеть R).

Затем можно поставить различные дополнительные библиотеки. Существует over9000 разных дополнений для языка программирования R – и это может сбить с толку. Посему, мы будем руководствоваться лишь установкой базовых пакетов, для начала. По этой ссылке можно посмотреть библиотеки из CRAN Views. Собственно, там можно выбрать те подтипы библиотек, которые вам интересны.

Как подключать библиотеки, смотрите здесь;

Некоторые важные библиотеки, о которых стоит знать, смотрите тут;

Необходимо установить все три нижеследующих GUI вместе с зависимыми пакетами:

  • Rattle – для анализа данных (Ссылка) или install.packages(“rattle”, dep=c(“Suggests”))
  • R Commander — для базовой статистики (Ссылка) или install.packages(“Rcmdr”)
  • Deducer (вместе с JGR) для визуализации данных (Ссылка)

Также нужно установить RStudio. Работать на языке программирования R в ней значительно быстрее и проще, так как RStudio позволяет писать множественные строки кода, подключать и поддерживать библиотеки и вообще более продуктивно обустроить свою рабочую среду.

Задание:

  1. Установить R и RStudio;
  2. Установить библиотеки Rcmdr, rattle и Deducer. Установить все предложенные или сопутствующие пакеты, включая GUI;
  3. Загрузить эти библиотеки, используя соответствующие команды, поочередно открыть GUI.

Чтобы начать, необходимо постичь основы языка программирования R, его библиотек и структур данных. Начать изучение лучше всего с Datacamp. Особое внимание обратите на бесплатный курс введения в язык программирования R (вот тут можно почитать). К концу этого курса вы сможете писать небольшие скрипты на R, а также понять принципы анализа данных. В качестве альтернативы можно пройти «Школу программирования на R» вот здесь.

Если вы хотите изучать R офлайн в свободное время, можно использовать интерактивный пакет со Swirlstats.

Особое внимание следует уделить изучению read.table, структур данных, таблиц, сводок, описаний, загрузки и установки библиотек, визуализации данных с использованием команд.

Задание:

  1. Подписаться на ежедневную рассылку, относительно проекта R здесь;
  2. Создать аккаунт на Github;
  3. Учиться разбираться с установкой проблемных библиотек, используя Google для справки;
  4. Установить swirl-пакеты (см. выше) и изучать программирование на R;
  5. Черпать знания с Datacamp.

Если интерактивное программирование — не ваш стиль, можно смотреть двухминутные туториалы по языку программирования R тут. Данный видеокурс частично затрагивает поднятые здесь вопросы. Также можно ознакомиться с этим постом, чтобы получить более ясное представление о функциях языка R.

Вам придется много работать для чистки данных, особенно если доведется обрабатывать текстовую информацию. Самое правильное, что можно сделать для начала – это пройти соответствующие упражнения. О соединении с базами данных можно узнать с помощью библиотеки RODBC, а о написании sql-запросов к структурам данных через sqldf.

Задание:

  1. Почитайте о разделенном, прикладном и комбинированном подходах к анализу данных в Journal of Statisical Software;
  2. Попытайтесь изучить подход «аккуратных данных» для проведения анализа;
  3. Почитайте о работе языка программирования R с реляционными базами данных в статье на decisionstats.com;
  4. Сделайте несколько упражнений на понимание качества данных;
  5. Не сидите только на анализе цифр. Разберите с помощью R спортивную аналитику на примере крикета.

Если вам нужно больше практики, на Datacamp можно оформить подписку на все обучающие программы за $25/месяц. Но начать стоит с введения в plyr вот здесь.

Вот здесь и начинается самая веселая часть! Ниже – рекомендации к прочтению и выполнению. Практику начнем с некоторых общих операций.

  • Основательно изучите учебное пособие по data.table. Распечатайте и заучите шпаргалку по data.table;
  • Затем можно взглянуть на туториал по dplyr;
  • Чтобы понять основы анализа текста, сделайте облако слов на языке программирования R, потом пройдите следующий курс по неструктурированным данным: часть раз, часть два;
  • Сделайте анализ настроений, используя данные Твиттера, как, например, здесь и здесь;
  • По оптимизации с помощью R почитайте это и это.
  • Если вам нужна книга по бизнес-аналитике на языке программирования R, то вот — «R for Business Analytics» от Аджая Ори;
  • Если нужна книга для изучения R по-быстрому, то ее можно найти тут.
  1. Почитайте об Эдварде Тафте и его мыслях о том, как стоит (и не стоит) делать визуализацию данных здесь.
  2. Также, почитайте о подводных камнях при разработке дашбордов в материале Стивена Фью.
  3. Освойте грамотное построение графиков и практические способы их построения на R. По ссылке доступен курс по ggplot2 от доктора Хардли Уикхэма, создателя ggplot2 — одной из самых лучших библиотек для R на сегодняшний день.
  4. Если вы заинтересованы в пространственной визуализации данных, не проходите мимо библиотеки ggmap.
  5. Если интересуетесь анимацией данных, взгляните на эти примеры. Взять библиотеку для анимации можно здесь.
  6. С помощью Slidify можно визуализировать данные в виде слайдов на HTML5.

Сейчас мы подошли к наиболее ценным для аналитика навыкам – глубокому анализу и машинному обучению. Исчерпывающий набор информации о глубоком анализе с помощью R можно найти на RDM. А также свободно распространяемую и простую для понимания книгу по этой теме за авторством Грэхэма Уильямса можно найти здесь.

Обзор таких алгоритмов, как регрессия, дерева решений, ансамбли моделирования и кластеризация, а также опции для машинного обучения, доступные в R, можно найти по этой ссылке.

  • «Data Mining with Rattle and R» — хорошая книга по глубокому анализу данных.
  • Почитать о прогнозировании временных рядов на языке программирования R можно тут.
  • Кое-что по машинному обучению в R есть здесь, а также здесь можно записаться на бесплатные курсы.

Поздравления! Вы добились своего. Теперь у вас есть все, что нужно, осталось оттачивать технические навыки.

  1. Итак, теперь необходимо практиковаться, и для этого как нельзя лучше подойдут соревнования с коллегами-аналитиками на Kaggle. Начать этот практический курс можно отсюда.
  2. Оставаться на связи с коллегами по R-цеху можно подписавшись на R-bloggers.
  3. Для большего социального взаимодействия можно использовать в Твиттере хештег # rstats.
  4. Если на чем-то застряли, этот сайт поможет быстро разобраться и даст нужное количество информации.

Теперь, когда вы знаете об анализе данных с помощью R все, что нужно, настало время получить некоторые дополнительные задания. Есть вероятность, что кое-что из этого вы уже видели, но, все же, ознакомьтесь с этими материалами тоже.

  1. Занятие на тему совместного использования R и MongoDB есть тут.
  2. Еще один хороший материал по анализу Больших Данных с помощью R в NoSQL-эру.
  3. К слову, используя Shiny из RStudio, можно сделать интерактивное веб-приложение.
  4. Гайд для интересующихся в изучении синтаксиса R и Python здесь.


Статьи по теме